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Kinetics of ultrashort relativistic electron pulses emitted from solid targets
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Interaction of ultrashort high-intensity laser pulses with solid targets generates relativistic electrons which
escape from the target. The kinetics of these ultrashort electron pulses is governed by self-fields generated by
the charge of the electron cloud. In this paper an analytical theory is developed which allows calculation of
electron trajectories, electron fluxes, and electron spectra at any distance from the target. The theory is exact for
two limiting cases(a) a monoenergetic electron pulse with an arbitrary temporal skthpan infinitely short
electron pulse with an arbitrary energy spectrum. These results have applications in high-intensity irradiation
experiments, e.g., in experiments irradiating samples with ultrashort electron or x-ray pulses, in developing
optics for fourth-generation light sources, and in work relating to x-ray lasers.
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I. INTRODUCTION bitrary temporal shapeand instantaneously released elec-

It is well known that interaction of a high-intensity laser rons with anarbitrary energy spectrum-are treated in a
pulse with a solid target generates intense electron pu|sé§’llfled way. The results are then used to calculate' important
[1-5]. These electrons are seen to escape from the front sidgatures, such as the fraction of electrons propagating beyond
of the material as well as to propagate into the material@ certain distance from the target, and electron spectra at a
Highly collimated beams with a velocity close to light veloc- distance from the target. The theory is based on solving the
ity have been reportef6,7]. Experimental and theoretical Poisson equation and the equation of motion of the electrons
features of propagation of laser-generated electron beansmultaneously, using a Lagrangian coordinate for the
through solids and dense plasmas are reasonably well undeglectrons.
stood [8—11]. However, our understanding of the transition  Applicability of the theory is limited to the region in
of high-current electron beams from the conductor into awhich the Lagrangian description is viable. It should be kept
vacuum is much less complete. Straightforward applicatioin mind that electrons reflected close to the target surface
of the Poisson equation predicts that large electrostatic field®rm a “virtual cathode” for which the electron flow is no
are generated, slowing down the electrons or entirely prelonger laminar and for which the Lagrangian coordinate
venting their propagation. Thus, the farther away from thebreaks down. Nevertheless, it will turn out that the region
target a sample to be irradiated is positioned, the fewer elesvhere the theory is applicable covers the greater part of the
trons are expected to hit the sample and the more the effespatiotemporal domain.
of the x rays dominates. Quantitative knowledge of the num-
ber of electrons and their energy distribution is essential for Il. MONOENERGETIC ELECTRON BEAM
separating the effects of the x rays from those of the elec- WITH ARBITRARY TEMPORAL SHAPE
trons. This is crucial for utilizing laser-generated intense x
rays for irradiating samples, e.g., in developing optics for
fourth-generation light sources and pumping x-ray Iasersa.r

Consider a planar one-dimensional electron beam with an
real densityN, entering a vacuum from a conducting solid.
he electron flux as a function of time is given lp(t) and

[4,5,12. ) )
Typically, in such experiments the radiation source should® related to the areal density of the electrons by
be approached as closely as possible in order to obtain a high o
radiation dose. Experiments with source-sample distances of Na—f npdt. 1)
0

50-100um are state of the af#,13] but smaller distances
are desirable. If the gap between source and sample i§ | agrangian coordinaté for the electrons is defined by
smaller than the source diameter, the geometry is planar and
the x-ray dose becomes independent of the distance. How- 1"
ever, as will be shown in this paper, the electron dose is g(t)zN—f
strongly dependent on the gap width. 2
In previous work, analytical theories were developed forwhich ranges between 0 and 1 and denotes the fraction of
the case of a monoenergetic electron beam which is constaatectrons emitted up to a time Closed form solutions are
in time [14] or rises with a power lal5]. Furthermore, the anticipated if7,(t) can be integrated and the integral func-
case of an infinitely short electron pulse with a flat distribu-tion can be inverted. This is the case for many practical
tion of energied16] and with an energy spectrufi7] was functions, such as exponential decay and the Lorentzian and
developed. so-called Rayleigh functions to be discussed later.
In this paper the theory of Refl7] is further developed The system considered is globally charge neutral: A posi-
and two limiting cases—monoenergetic electrons wittaan  tive surface charge on the boundary of the conductor equal to

7]bdt, y (2)
0

1539-3755/2004/13)/0364095)/$22.50 70 036409-1 ©2004 The American Physical Society



ERNST E. FILL PHYSICAL REVIEW E70, 036409(2004)

the charge of the electron cloud provides global charge neu-
trality and makes the field zero in the conductor. Thus, the
field is zero in the conductor, sharply rises close to the
boundary, has a maximum at the boundary itself, and then
slowly decays along the electron cloud to become zero again
at the outermost particle. It then stays zero up to infinity.

For an electron population with Lagrangian coordinéte x
the areal density of electrons further out from the target is
given by ¢éN,. The Poisson equation then yields for the elec-
tric field in the vacuum region

E=4meéN,, (3

0.1

0.2

wheree is the elementary electric charggee the Appendix 20 30 40
for a rigorous derivation The equation of motion becomes T

ﬂg — 47Te2§Na/(mC73). (4) FIG. 1. Electron trajectories for a monoenergetic “Rayleigh”

at - pulse forr,,=2 (drawn dottegl with the Lagrangian coordinat&

. . . . . . . as a parameter. The initial electron energy is 500 keV. The space
In this equationg is the particle velocity divided bg,c is and time coordinates are dimensionless. Curves are drawg for

the light velocity, m is the electron rest mass, and=(1 ~ -0001,0.1,0.2,... up to 0.9. The curve with0.8 is seen to cross

- %2 is the relativistic mass factor. the curve with¢=0.9, indicating breakdown of the Lagrangian co-
It is advantageous to go over to dimensionless variablegrdinate description.

by introducing the definitions

T=tht, X=x/X, (5) inserted in Eqgs(8) and (9)] bec'omeSTQ(g):Tmai—Z In(1
' -¢]Y2. Figure 1 shows space-time trajectories for the par-

with the normalization parametetg=(4mcrN,) ™t and X,  ticular case of £,=500 keV, 7,,,=2, and values ofé
= (4 Ny) ™. Herer,=€/mc*=2.82x 10" cm is the clas- =0.001, 0.1, 0.3, ...up to 0.9. The pulse is also drawn in the

sical electron radius. As an example, at a typical experimenfigure. The electrons released at later timeith ¢ increas-
tal areal density oN,=10" cm® one hasx,=2.8um and  ing) exhibit shorter and shorter orbits due to the rising self-

t,=9.3 fs. With these definitions E¢4) transforms to fields. The breakdown of the Lagrangian coordinate is seen
9B to occur até=0.8, for which value two curves cross each
= =-g1-p3°%2 (6)  other. In the greater part of the spatiotemporal domain, how-
ar ever, the Lagrangian coordinate is sound and the theory is
Integration of Eq(6) yields applicable.
L =-¢ér+Cy. (7 1. INSTANTANEOUSLY RELEASED ELECTRONS
(1 _B2)1/2

WITH ARBITRARY ENERGY DISTRIBUTION
Using the initial condition thaiB=g, for 7=7y(¢), where
10(&) =to(é) /1, andty(é) is the inverse of(t) defined in Eq.
(2), one obtains for the integration consta@=_Lv,
+&19(€). This yields the final solution fog:

o &) =f f(U")du'. (1)
{[ﬁo)’o + gTo(g) - 57-]2 + 1}1/2' (8) !

Further integration over using the boundary condition that
X=0 for 7=75(¢) results in the solution foK:

This second limiting case can be treated in close analogy
to the first one. Again, a Lagrangian coordinate for the elec-
trons is used, with the new definition

B ) =

Here U is the energy of the electrons af@J)dU is their
normalized energy distribution. From its definitiaf{U)
ranges from 0 to 1 and gives the fraction of the electrons
1 ) 1 with an energy greater thald. Note the difference in the
X(& 7= E{VO_ [Bovo+£m0(&) =D+ 11" (9 jimits of the integral with respect to E@l); this choice of
limits is advantageous to render the formalism as similar as
To illustrate the significance of E¢9), Fig. 1 shows particle possible to that in the previous section.
trajectories for the example of a Rayleigh pulse, given in  To make the situation more general it is assumed that the
normalized form by electrons first propagate uninhibited through a foil of thick-
_ nessd. (For electrons that emerge from the front side of a
(1) = 1T OX= 7127033 (10 target one may takel=0.) If the electrons start instanta-
This pulse has a maximum at,,, with a pulse half-width  neously, particles cannot overtake each other. Thus, at a dis-
given by 1.6y, Inserting Eq.(10) in Eq. (1), it is easily  tancex from the solid, the Lagrangian coordinajeenotes
realized that for this function the expression fgt¢) [to be  the fraction of the electrons that has propagated beyond that
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24 | the greater part of the spatiotemporal domain, however, the
&= 0.001 T Lagrangian description is justified.
20

IV. APPLICATIONS

16
0.1 A. Fraction of electrons beyond a certain distance
x 12 from the target

8 An important application of the above theory is calcula-
] 0.2 tion of the fraction of electrons that propagate beyond a cer-
4 tain distance from the target. This is achieved by realizing
] 0.3 that the maximum distance of the electrons with Lagrangian
04— . : . coordinate¢ is determined by the conditiof=0. The frac-
o 5 1 15 20 25 30 3% 40 tion of electrons to be found beyond that distance is thus
T given by &(8=0). Applying this condition to Eqs(7) and
. _ o (12) and inserting into Eqs8) and (13), respectively, one
FIG. 2. Electron trajectories for an infinitely short electron DU|Seobtains the equation
with an exponential energy distribution. The space and time coor-
dinates are dimensionless. Electron temperakiige-500 keV. The Xinal &) = (v = D/E, (14)
electrons are released at the rear of a foil with a normalized thick-
nessD=5. Curves are drawn fof=0.001, 0.1, 0.2,... up to 0.8. and thus the fraction of electrons propagating bey¥nis
The curve with£=0.7 is seen to cross the curve wigk0.8, indi-  given by
cating breakdown of the Lagrangian coordinate description.

£=(v~-DIX. (15
distance. Similarly to the previous section, integration of the . .
Poisson equatiosee the Appendixyields the field at posi- 't Should be noted that in the case of a monoenergetic elec-
tion x as given byE(x)=4mefN,, and electrons with La- TOn beam, Eq(15) is a simple algebraic equation, whereas
grangian coordinaté experience a decelerating force given for a beam with an electron_engrgy distributigs depends
by —4me2¢N,. With the same normalization as previously the on ¢, and therefore the equation |n.general becomes trgns_cen—
equation of motion is again given by E€), integration of dental. For example, an exponential electron energy distribu-
which leads to Eq(7). However, now the boundary condi- tion yieldsU=—KkTe In £ for the kinetic energy and thus
tion is different and the integration constaBi is derived KT
from the condition that the particles have a velogyat a Y%=1 ——C‘;m I3 (16)
time t=d/ B¢, i.e., atr=D/ By, whereD=d/x, is the dimen- m
sionless foil thickness. With this boundary condition, solving

for 8 one obtains Therefore Eq(15) becomes

YoBo* éDIfo— 7 gz Kleln & (17)

[(v0fo+ €D By — £m)2 + 1112 (12) Kl

Further integrating, using the boundary condit¥r0 at 7
=D/ By, yields the trajectory

In Fig. 3 the results of Eqg15) and(17), viz., the fractions

of electrons bridging a vacuum gap behind the target, are

plotted forkT,=200, 500, and 1000 ke{exponential energy

1 distribution and for £,=200, 500, and 1000 ke¥monoen-

X(&7) = {0 [(y0Bo+ £DIBy - £D%+1]¥2.  (13)  ergetic beam To make the results better applicable to a real
§ situation an areal density f,=10" cm 2 is chosen and the

The similarity of Eqs.(12) and (13) to Eqgs.(8) and(9) for distance scale is in micrometers.

the monoenergetic case is obvious. However, in Ef2) _
and(13) B, and y, are functions of in a way depending on B. Electron energy spectrum at a distance from the target

the electron energy distribution. The significance of &) The introduction of a Lagrangian coordinate allows cal-
is illustrated in Fig. 2, which displays orbits with increasing ¢jation of the energy spectrum of the electrons at any dis-
¢ for the particular case of an exponential energy distribuyance from the target: Electrons with Lagrangian coordinate
tion. A tem_pergturekT; 500 keV is chos_en _and the dimen- ¢ lose a kinetic energgU = 4me?xéN,, after they have propa-
sionless foil thicknes®=5. The finite foil thickness results gated a distance away from the target. In normalized quan-
in the starting points of the orbits being displaced by the time(ities, the energy loss is given blyU=mX¢ and thus the

taken by the different electron populations to traverse thgemaining energy of these electrons is given by
foil. The first orbit, with£é=0.001, starts at=5, which is just

the normalized time an electron wifp=1 needs to traverse U =Uy- m&X¢E. (18)
the foil. Again, for£>0.7, in a small region near the target
the description with a Lagrangian coordinate breaks down. IDifferentiating with respect t@ one obtains
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FIG. 3. Fraction of electrons crossing a gap. The curves are FIG. 4. Electron spectra at various distances from the target. The
drawn for real coordinates and an areal electron density oturves are drawn for real coordinates and an areal electron density
10" cm™2. Dotted curves are for monoenergetic electrons with elecof 1015 cm2, The input spectrungat x=0) is exponential with a
tron energies of 200, 500, and 1000 ke¢Wom bottor). These  temperature of 500 keV. Further spectra are shefwom top) at
curves are seen to originate at a small distance from the target, distancesx=5, 10, 25, 50, and 10@m from the target.
consequence of the breakdown of the Lagrangian coordinate de-
scription. Solid curves are for exponential electron energy distriou@ vVacuum after propagating through a metallic foil.

tions with kT,=200, 500, and 1000 kelfrom bottor). Application of the theory to conditions encountered in
experiments reveals that the fraction of electrons crossing a
narrow gap very much depends on the electron temperature.
dU  aU, . : o
— =2 _mX. (19) A typical experimental areal electron density iN,
9 d¢ =10 cm™2. Inspection of Fig. 3 shows that, under this con-

From Eq.(11) the fraction of electrons in any energy interval dition and for an initially exponential distribution \_/vitlee
dU is given by £d¢/4U)dU and thus the energy spectrum of =200 keV, only 10% of the electrons reach _a distance of
the electrons is obtained by varyirgirom 0 to 1 and plot- 22 #M from the target surface. However, foife=500 keV

ting —a&l 3U=-1/(3U/d¢) from Eq.(19) vs U. ilt;}f)l}efcgaction is twice as large, and for 1 MeV it is about
For an exponential energy distribution the expression : . .
L " The spectra derived from the theory show that the high-
(18) and(19) become quite simple, yielding energy tail of the electron energy distribution is much less
U=-kT.In é- mcX (200  reduced than the low-energy part. Wkiy=10" cm2 again
and being used, an initially exponential spectrum wiki,

=500 keV is significantly deprived of low-energy electrons
JU (see Fig. 4. At a distance of 25um the number of electrons

T KTJ/&+mcX. (21)  below 100 keV is down by a factor of about 10, whereas the

number of 1 MeV electrons is reduced by a factor of less
In Fig. 4 electron spectra at different distances from the tarthan 3. The high-energy tail above 3 MeV is almost unaf-
get are displayed. Again, to make the figure more applicabléected even at a distance of 1p@n from the target.
to a real experiment, the areal density of the electrons is A relatively simple analytical theory such as this one is
specified at 18 cm? and real distanceén micrometers  subject to a number of limitations. It should be kept in mind
rather than normalized ones are plotted. One can see how titeat the theory breaks down in a region where the Lagrang-
original spectrum(at x=0) is altered upon increasing the ian formalism is no longer applicable. This occurs at the time
distance from the target. Note that the electron distribution isvhen electrons begin to be reflected close to the target sur-
normalized to the distribution at=0, and thus at a distance face. As a consequence, electron trajectories cross each other

from the target the number of electrons is reduced. and a “virtual cathode” is formed. Fortunately, as inspection
of Figs. 1 and 2 reveals, this happens only in a very limited
V. CONCLUSIONS AND LIMITATIONS spatiotemporal domain, and thus the theory is valid in the

OF APPLICABILITY greater part of space and time.

A further limitation of applicability arises due to the pla-
The above theory shows that the description of electronsar geometry. It limits the distance from the target at which

by means of a Lagrangian coordinate allows analytical calthe theory is applicable to about the diameter of the beam. At
culation of electron kinetics subject to self-generated fieldslarger diameters expansion of the beam in the radial direction
Electron trajectories, electron transmissions, and spectra canill decrease the electric field and permit more electrons to
easily be determined. Experimental conditions for which theescape from the target. In addition, magnetic field effects will
theory is applicable include electrons emerging from thegain in importance in relation to the purely electrostatic ef-
front side of an irradiated target and electrons emerging intdects considered here.
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Another point of concern is the plasma formed at the tar=-dx/u, whereu is the velocity of the particles, one obtains
get. Plasmas are generated on the front and rear sides of
targets(see, for examplg2]). Formation of a plasma rules
out applicability of the theory in this region. Fortunately, the
expansion velocity of a plasma is of the order of the ion
acoustic velocity, and therefore the disturbed range is quit&here Xn,,=x(£=0). Realizing that the beam electron den-
small for the time scales considered in this paper. Howevesity n, is given by n,/u, Eq. (Al) is written as
for longer time scales plasma expansion and the appearance

1t 1 x(§)
£= N_J mdt’ == Py, (A1)
aJo0

a Xm ax

of accelerated ions will alter the space charge distribution at £= 1 Xmaxnbdx, (A2)

increasing distances from the target. Further analysis would NaJxe ’

be necessary to take the effects of plasma formation fully ) . . )

into account. and integration of the Poisson equation leads directly to Eq.
Obviously, the condition of instantaneous release of thd3) for the field,

electrons required for the case of the electron energy distri- _

bution treated in Sec. Il is better satisfied for shorter pulse E = 4meéN,. (A3)

duration. The theory is still approximately applicable at aThe negative charge of the electrons results in the positive
distancex from the target if the pulse duration satisfigs  sign in Eq.(A3).

<x/c. It _is easily a}ppreciated that this is a precondition for a  Similarly, the integral of Eq(11) can be transformed into
Lagrangian coordinate treatment to apply. an integral over space by the substitutifi))dU=dN,/N,
=nyd,/N,. Equation(11) then becomes
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from which again Eq(A3) follows. In Egs.(A2) and (A4)
APPENDIX use has been made of the fact that the number of particles
To prove that the electric field at a Lagrangian coordinatdetween two Lagrangian coordinates is constant, and thus for
i Qi i i fixed & and &, the inte ralfx(gz)n dx’ is independent of time
¢ is given by Eq.(3) the integral of Eq(2) is transformed 1 2 gral )Mo P
into an integral over the spatial coordinate Using dt  and space.
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