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Interaction of ultrashort high-intensity laser pulses with solid targets generates relativistic electrons which
escape from the target. The kinetics of these ultrashort electron pulses is governed by self-fields generated by
the charge of the electron cloud. In this paper an analytical theory is developed which allows calculation of
electron trajectories, electron fluxes, and electron spectra at any distance from the target. The theory is exact for
two limiting cases:(a) a monoenergetic electron pulse with an arbitrary temporal shape;(b) an infinitely short
electron pulse with an arbitrary energy spectrum. These results have applications in high-intensity irradiation
experiments, e.g., in experiments irradiating samples with ultrashort electron or x-ray pulses, in developing
optics for fourth-generation light sources, and in work relating to x-ray lasers.
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I. INTRODUCTION

It is well known that interaction of a high-intensity laser
pulse with a solid target generates intense electron pulses
[1–5]. These electrons are seen to escape from the front side
of the material as well as to propagate into the material.
Highly collimated beams with a velocity close to light veloc-
ity have been reported[6,7]. Experimental and theoretical
features of propagation of laser-generated electron beams
through solids and dense plasmas are reasonably well under-
stood [8–11]. However, our understanding of the transition
of high-current electron beams from the conductor into a
vacuum is much less complete. Straightforward application
of the Poisson equation predicts that large electrostatic fields
are generated, slowing down the electrons or entirely pre-
venting their propagation. Thus, the farther away from the
target a sample to be irradiated is positioned, the fewer elec-
trons are expected to hit the sample and the more the effect
of the x rays dominates. Quantitative knowledge of the num-
ber of electrons and their energy distribution is essential for
separating the effects of the x rays from those of the elec-
trons. This is crucial for utilizing laser-generated intense x
rays for irradiating samples, e.g., in developing optics for
fourth-generation light sources and pumping x-ray lasers
[4,5,12].

Typically, in such experiments the radiation source should
be approached as closely as possible in order to obtain a high
radiation dose. Experiments with source-sample distances of
50–100mm are state of the art[4,13] but smaller distances
are desirable. If the gap between source and sample is
smaller than the source diameter, the geometry is planar and
the x-ray dose becomes independent of the distance. How-
ever, as will be shown in this paper, the electron dose is
strongly dependent on the gap width.

In previous work, analytical theories were developed for
the case of a monoenergetic electron beam which is constant
in time [14] or rises with a power law[15]. Furthermore, the
case of an infinitely short electron pulse with a flat distribu-
tion of energies[16] and with an energy spectrum[17] was
developed.

In this paper the theory of Ref.[17] is further developed
and two limiting cases—monoenergetic electrons with anar-

bitrary temporal shapeand instantaneously released elec-
trons with anarbitrary energy spectrum—are treated in a
unified way. The results are then used to calculate important
features, such as the fraction of electrons propagating beyond
a certain distance from the target, and electron spectra at a
distance from the target. The theory is based on solving the
Poisson equation and the equation of motion of the electrons
simultaneously, using a Lagrangian coordinate for the
electrons.

Applicability of the theory is limited to the region in
which the Lagrangian description is viable. It should be kept
in mind that electrons reflected close to the target surface
form a “virtual cathode” for which the electron flow is no
longer laminar and for which the Lagrangian coordinate
breaks down. Nevertheless, it will turn out that the region
where the theory is applicable covers the greater part of the
spatiotemporal domain.

II. MONOENERGETIC ELECTRON BEAM
WITH ARBITRARY TEMPORAL SHAPE

Consider a planar one-dimensional electron beam with an
areal densityNa entering a vacuum from a conducting solid.
The electron flux as a function of time is given byhbstd and
is related to the areal density of the electrons by

Na =E
0

`

hbdt. s1d

A Lagrangian coordinatej for the electrons is defined by

jstd =
1

Na
E

0

t

hbdt8, s2d

which ranges between 0 and 1 and denotes the fraction of
electrons emitted up to a timet. Closed form solutions are
anticipated ifhbstd can be integrated and the integral func-
tion can be inverted. This is the case for many practical
functions, such as exponential decay and the Lorentzian and
so-called Rayleigh functions to be discussed later.

The system considered is globally charge neutral: A posi-
tive surface charge on the boundary of the conductor equal to
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the charge of the electron cloud provides global charge neu-
trality and makes the field zero in the conductor. Thus, the
field is zero in the conductor, sharply rises close to the
boundary, has a maximum at the boundary itself, and then
slowly decays along the electron cloud to become zero again
at the outermost particle. It then stays zero up to infinity.

For an electron population with Lagrangian coordinatej
the areal density of electrons further out from the target is
given byjNa. The Poisson equation then yields for the elec-
tric field in the vacuum region

E = 4pejNa, s3d

wheree is the elementary electric charge(see the Appendix
for a rigorous derivation). The equation of motion becomes

] b

] t
= − 4pe2jNa/smcg3d. s4d

In this equationb is the particle velocity divided byc,c is
the light velocity, m is the electron rest mass, andg=s1
−b2d−1/2 is the relativistic mass factor.

It is advantageous to go over to dimensionless variables
by introducing the definitions

t = t/tn, X = x/xn s5d

with the normalization parameterstn=s4pcreNad−1 and xn

=s4preNad−1. Here re=e2/mc2=2.82310−13 cm is the clas-
sical electron radius. As an example, at a typical experimen-
tal areal density ofNa=1015 cm−2 one hasxn=2.8 mm and
tn=9.3 fs. With these definitions Eq.(4) transforms to

] b

] t
= − js1 − b2d3/2. s6d

Integration of Eq.(6) yields

b

s1 − b2d1/2 = − jt + C1. s7d

Using the initial condition thatb=b0 for t=t0sjd, where
t0sjd= t0sjd / tn and t0sjd is the inverse ofjstd defined in Eq.
(2), one obtains for the integration constantC1=b0g0
+jt0sjd. This yields the final solution forb:

bsj,td =
b0g0 + jt0sjd − jt

hfb0g0 + jt0sjd − jtg2 + 1j1/2. s8d

Further integration overt using the boundary condition that
X=0 for t=t0sjd results in the solution forX:

Xsj,td =
1

j
hg0 − f„b0g0 + jt0sjd − jt…2 + 1g1/2j. s9d

To illustrate the significance of Eq.(9), Fig. 1 shows particle
trajectories for the example of a Rayleigh pulse, given in
normalized form by

hbstd = t/tmax
2 exps− t2/2tmax

2 d. s10d

This pulse has a maximum attmax with a pulse half-width
given by 1.6tmax. Inserting Eq.(10) in Eq. (1), it is easily
realized that for this function the expression fort0sjd [to be

inserted in Eqs.(8) and (9)] becomest0sjd=tmaxf−2 lns1
−jdg1/2. Figure 1 shows space-time trajectories for the par-
ticular case of Eel=500 keV, tmax=2, and values ofj
=0.001, 0.1, 0.3, . . .up to 0.9. The pulse is also drawn in the
figure. The electrons released at later times(with j increas-
ing) exhibit shorter and shorter orbits due to the rising self-
fields. The breakdown of the Lagrangian coordinate is seen
to occur atj=0.8, for which value two curves cross each
other. In the greater part of the spatiotemporal domain, how-
ever, the Lagrangian coordinate is sound and the theory is
applicable.

III. INSTANTANEOUSLY RELEASED ELECTRONS
WITH ARBITRARY ENERGY DISTRIBUTION

This second limiting case can be treated in close analogy
to the first one. Again, a Lagrangian coordinate for the elec-
trons is used, with the new definition

jsUd =E
U

`

fsU8ddU8. s11d

Here U is the energy of the electrons andfsUddU is their
normalized energy distribution. From its definitionjsUd
ranges from 0 to 1 and gives the fraction of the electrons
with an energy greater thanU. Note the difference in the
limits of the integral with respect to Eq.(1); this choice of
limits is advantageous to render the formalism as similar as
possible to that in the previous section.

To make the situation more general it is assumed that the
electrons first propagate uninhibited through a foil of thick-
nessd. (For electrons that emerge from the front side of a
target one may taked=0.) If the electrons start instanta-
neously, particles cannot overtake each other. Thus, at a dis-
tancex from the solid, the Lagrangian coordinatej denotes
the fraction of the electrons that has propagated beyond that

FIG. 1. Electron trajectories for a monoenergetic “Rayleigh”
pulse fortmax=2 (drawn dotted) with the Lagrangian coordinatej
as a parameter. The initial electron energy is 500 keV. The space
and time coordinates are dimensionless. Curves are drawn forj
=0.001, 0.1, 0.2, . . . up to 0.9. The curve withj=0.8 is seen to cross
the curve withj=0.9, indicating breakdown of the Lagrangian co-
ordinate description.
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distance. Similarly to the previous section, integration of the
Poisson equation(see the Appendix) yields the field at posi-
tion x as given byEsxd=4pejNa, and electrons with La-
grangian coordinatej experience a decelerating force given
by −4pe2jNa. With the same normalization as previously the
equation of motion is again given by Eq.(6), integration of
which leads to Eq.(7). However, now the boundary condi-
tion is different and the integration constantC1 is derived
from the condition that the particles have a velocityb0 at a
time t=d/b0c, i.e., att=D /b0, whereD=d/xn is the dimen-
sionless foil thickness. With this boundary condition, solving
for b one obtains

bsj,td =
g0b0 + jD/b0 − jt

fsg0b0 + jD/b0 − jtd2 + 1g1/2. s12d

Further integrating, using the boundary conditionX=0 at t
=D /b0, yields the trajectory

Xsj,td =
1

j
hg0 − fsg0b0 + jD/b0 − jtd2 + 1g1/2j. s13d

The similarity of Eqs.(12) and (13) to Eqs.(8) and (9) for
the monoenergetic case is obvious. However, in Eqs.(12)
and(13) b0 andg0 are functions ofj in a way depending on
the electron energy distribution. The significance of Eq.(13)
is illustrated in Fig. 2, which displays orbits with increasing
j for the particular case of an exponential energy distribu-
tion. A temperaturekTe=500 keV is chosen and the dimen-
sionless foil thicknessD=5. The finite foil thickness results
in the starting points of the orbits being displaced by the time
taken by the different electron populations to traverse the
foil. The first orbit, withj=0.001, starts att=5, which is just
the normalized time an electron withb=1 needs to traverse
the foil. Again, forj.0.7, in a small region near the target
the description with a Lagrangian coordinate breaks down. In

the greater part of the spatiotemporal domain, however, the
Lagrangian description is justified.

IV. APPLICATIONS

A. Fraction of electrons beyond a certain distance
from the target

An important application of the above theory is calcula-
tion of the fraction of electrons that propagate beyond a cer-
tain distance from the target. This is achieved by realizing
that the maximum distance of the electrons with Lagrangian
coordinatej is determined by the conditionb=0. The frac-
tion of electrons to be found beyond that distance is thus
given by jsb=0d. Applying this condition to Eqs.(7) and
(12) and inserting into Eqs.(8) and (13), respectively, one
obtains the equation

Xmaxsjd = sg0 − 1d/j, s14d

and thus the fraction of electrons propagating beyondX is
given by

j = sg0 − 1d/X. s15d

It should be noted that in the case of a monoenergetic elec-
tron beam, Eq.(15) is a simple algebraic equation, whereas
for a beam with an electron energy distributiong0 depends
on j, and therefore the equation in general becomes transcen-
dental. For example, an exponential electron energy distribu-
tion yieldsU=−kTe ln j for the kinetic energy and thus

g0 = 1 −
kTe

mc2ln j. s16d

Therefore Eq.(15) becomes

j = −
kTe

mc2

ln j

X
. s17d

In Fig. 3 the results of Eqs.(15) and(17), viz., the fractions
of electrons bridging a vacuum gap behind the target, are
plotted forkTe=200, 500, and 1000 keV(exponential energy
distribution) and forEel=200, 500, and 1000 keV(monoen-
ergetic beam). To make the results better applicable to a real
situation an areal density ofNa=1015 cm−2 is chosen and the
distance scale is in micrometers.

B. Electron energy spectrum at a distance from the target

The introduction of a Lagrangian coordinate allows cal-
culation of the energy spectrum of the electrons at any dis-
tance from the target: Electrons with Lagrangian coordinate
j lose a kinetic energyDU=4pe2xjNa after they have propa-
gated a distancex away from the target. In normalized quan-
tities, the energy loss is given byDU=mc2Xj and thus the
remaining energy of these electrons is given by

U = U0 − mc2Xj. s18d

Differentiating with respect toj one obtains

FIG. 2. Electron trajectories for an infinitely short electron pulse
with an exponential energy distribution. The space and time coor-
dinates are dimensionless. Electron temperaturekTe=500 keV. The
electrons are released at the rear of a foil with a normalized thick-
nessD=5. Curves are drawn forj=0.001, 0.1, 0.2, . . . up to 0.8.
The curve withj=0.7 is seen to cross the curve withj=0.8, indi-
cating breakdown of the Lagrangian coordinate description.
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] U

] j
=

] U0

] j
− mc2X. s19d

From Eq.(11) the fraction of electrons in any energy interval
dU is given by −s]j /]UddU and thus the energy spectrum of
the electrons is obtained by varyingj from 0 to 1 and plot-
ting −]j /]U=−1/s]U /]jd from Eq. (19) vs U.

For an exponential energy distribution the expressions
(18) and (19) become quite simple, yielding

U = − kTe ln j − mc2jX s20d

and

−
] U

] j
= kTe/j + mc2X. s21d

In Fig. 4 electron spectra at different distances from the tar-
get are displayed. Again, to make the figure more applicable
to a real experiment, the areal density of the electrons is
specified at 1015 cm−2 and real distances(in micrometers)
rather than normalized ones are plotted. One can see how the
original spectrum(at x=0) is altered upon increasing the
distance from the target. Note that the electron distribution is
normalized to the distribution atx=0, and thus at a distance
from the target the number of electrons is reduced.

V. CONCLUSIONS AND LIMITATIONS
OF APPLICABILITY

The above theory shows that the description of electrons
by means of a Lagrangian coordinate allows analytical cal-
culation of electron kinetics subject to self-generated fields.
Electron trajectories, electron transmissions, and spectra can
easily be determined. Experimental conditions for which the
theory is applicable include electrons emerging from the
front side of an irradiated target and electrons emerging into

a vacuum after propagating through a metallic foil.
Application of the theory to conditions encountered in

experiments reveals that the fraction of electrons crossing a
narrow gap very much depends on the electron temperature.
A typical experimental areal electron density isNa
=1015 cm−2. Inspection of Fig. 3 shows that, under this con-
dition and for an initially exponential distribution withkTe
=200 keV, only 10% of the electrons reach a distance of
25 mm from the target surface. However, forkTe=500 keV
that fraction is twice as large, and for 1 MeV it is about
tripled.

The spectra derived from the theory show that the high-
energy tail of the electron energy distribution is much less
reduced than the low-energy part. WithNa=1015 cm−2 again
being used, an initially exponential spectrum withkTe
=500 keV is significantly deprived of low-energy electrons
(see Fig. 4). At a distance of 25mm the number of electrons
below 100 keV is down by a factor of about 10, whereas the
number of 1 MeV electrons is reduced by a factor of less
than 3. The high-energy tail above 3 MeV is almost unaf-
fected even at a distance of 100mm from the target.

A relatively simple analytical theory such as this one is
subject to a number of limitations. It should be kept in mind
that the theory breaks down in a region where the Lagrang-
ian formalism is no longer applicable. This occurs at the time
when electrons begin to be reflected close to the target sur-
face. As a consequence, electron trajectories cross each other
and a “virtual cathode” is formed. Fortunately, as inspection
of Figs. 1 and 2 reveals, this happens only in a very limited
spatiotemporal domain, and thus the theory is valid in the
greater part of space and time.

A further limitation of applicability arises due to the pla-
nar geometry. It limits the distance from the target at which
the theory is applicable to about the diameter of the beam. At
larger diameters expansion of the beam in the radial direction
will decrease the electric field and permit more electrons to
escape from the target. In addition, magnetic field effects will
gain in importance in relation to the purely electrostatic ef-
fects considered here.

FIG. 3. Fraction of electrons crossing a gap. The curves are
drawn for real coordinates and an areal electron density of
1015 cm−2. Dotted curves are for monoenergetic electrons with elec-
tron energies of 200, 500, and 1000 keV(from bottom). These
curves are seen to originate at a small distance from the target, a
consequence of the breakdown of the Lagrangian coordinate de-
scription. Solid curves are for exponential electron energy distribu-
tions with kTe=200, 500, and 1000 keV(from bottom).

FIG. 4. Electron spectra at various distances from the target. The
curves are drawn for real coordinates and an areal electron density
of 1015 cm−2. The input spectrum(at x=0) is exponential with a
temperature of 500 keV. Further spectra are shown(from top) at
distancesx=5, 10, 25, 50, and 100mm from the target.
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Another point of concern is the plasma formed at the tar-
get. Plasmas are generated on the front and rear sides of
targets(see, for example,[2]). Formation of a plasma rules
out applicability of the theory in this region. Fortunately, the
expansion velocity of a plasma is of the order of the ion
acoustic velocity, and therefore the disturbed range is quite
small for the time scales considered in this paper. However,
for longer time scales plasma expansion and the appearance
of accelerated ions will alter the space charge distribution at
increasing distances from the target. Further analysis would
be necessary to take the effects of plasma formation fully
into account.

Obviously, the condition of instantaneous release of the
electrons required for the case of the electron energy distri-
bution treated in Sec. III is better satisfied for shorter pulse
duration. The theory is still approximately applicable at a
distancex from the target if the pulse duration satisfiestp
!x/c. It is easily appreciated that this is a precondition for a
Lagrangian coordinate treatment to apply.
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APPENDIX

To prove that the electric field at a Lagrangian coordinate
j is given by Eq.(3) the integral of Eq.(2) is transformed
into an integral over the spatial coordinatex. Using dt

=−dx/u, whereu is the velocity of the particles, one obtains

j =
1

Na
E

0

t

hbdt8 = −
1

Na
E

xmax

xsjd hb

u
dx8, sA1d

wherexmax=xsj=0d. Realizing that the beam electron den-
sity nb is given byhb/u, Eq. (A1) is written as

j =
1

Na
E

xsjd

xmax

nbdx8, sA2d

and integration of the Poisson equation leads directly to Eq.
(3) for the field,

E = 4pejNa. sA3d

The negative charge of the electrons results in the positive
sign in Eq.(A3).

Similarly, the integral of Eq.(11) can be transformed into
an integral over space by the substitutionfsUddU=dNa/Na

=nbdx/Na. Equation(11) then becomes

j =E
U

`

fsU8ddU8=
1

Na
E

xsjd

xmax

nbdx8 sA4d

from which again Eq.(A3) follows. In Eqs.(A2) and (A4)
use has been made of the fact that the number of particles
between two Lagrangian coordinates is constant, and thus for
fixed j1 andj2 the integralexsj1d

xsj2dnbdx8 is independent of time

and space.
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